
Fast Algorithms for Finding O(Congestion+Dilation)

Packet Routing Schedules

F. T. Leighton� Bruce M. Maggs Andr�ea W. Richa

July 1996

CMU-CS-96-152

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

� Mathematics Department, and

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract

In 1988, Leighton, Maggs, and Rao showed that for any network and any set of packets whose paths through

the network are �xed and edge-simple, there exists a schedule for routing the packets to their destinations in

O(c+ d) steps using constant-size queues, where c is the congestion of the paths in the network, and d is the

length of the longest path. The proof, however, used the Lov�asz Local Lemma and was not constructive. In

this paper, we show how to �nd such a schedule in O(P(log logP) logP) time, with probability 1�1=P�, for

any positive constant �, where P is the sum of the lengths of the paths taken by the packets in the network.

We also show how to parallelize the algorithm so that it runs in NC. The method that we use to construct

the schedules is based on the algorithmic form of the Lov�asz Local Lemma discovered by Beck.

Tom Leighton is supported in part by ARPA Contracts N00014-91-J-1698 and N00014-92-J-1799. Bruce Maggs

and Andr�ea Richa are supported in part by ARPA Contract F33615-93-1-1330 and in part by an NSF National Young

Investigator Award, No. CCR-9457766, with matching funds provided by NEC Research Institute.
The views and conclusions contained in this document are those of the authors and should not be interpreted as

representing the o�cial policies, either expressed or implied, of ARPA, NSF, or the U.S. government.



Keywords: Store and forward networks, Network problems, Network protocols, Combinatorial algo-

rithms



1 Introduction

In this paper, we consider the problem of scheduling the movements of packets whose paths through a

network have already been determined. The problem is formalized as follows. We are given a network with

n nodes (switches) and m edges (channels). Each node can serve as the source or destination of an arbitrary

number of messages. Each message consists of an arbitrary number of packets (or cells or 
its, as they are

sometimes referred to). Let N denote the total number of packets to be routed. (In a dynamic setting, N

would denote the rate at which packets enter the network. For simplicity, we will consider a static scenario

in which a total of N packets are to be routed through the network.) The goal is to route the N packets

from their origins to their destinations via a series of synchronized time steps, where at each step at most

one packet can traverse each edge.

Figure 1 shows a 5-node network in which one packet is to be routed to each node. The shaded nodes in

the �gure represent switches, and the edges between the nodes represent channels. A packet is depicted as

a square box containing the label of its destination.

During the routing, packets wait in three di�erent kinds of queues. Before the routing begins, packets

are stored at their origins in special initial queues. When a packet traverses an edge, it enters the edge queue

at the end of that edge. A packet can traverse an edge only if at the beginning of the step, the edge queue

at the end of that edge is not full. Upon traversing the last edge on its path, a packet is removed from the

edge queue and placed in a special �nal queue at its destination. In Figure 1, all of the packets reside in

initial queues. For example, packets 4 and 5 are stored in the initial queue at node 1. In this example, each

edge queue is empty, but has the capacity to hold two packets. Final queues are not shown in the �gure.

Independent of the routing algorithm used, the size of the initial and �nal queues are determined by the

particular packet routing problem to be solved. Thus, any bound on the maximum queue size required by a

routing algorithm refers only to the edge queues.

This paper focuses on the problem of timing the movements of the packets along their paths. A schedule

for a set of packets speci�es which move and which wait at each time step. Given any underlying network,

and any selection of paths for the packets, our goal is to produce a schedule for the packets that minimizes

the total time and the maximum queue size needed to route all of the packets to their destinations. We

would also like to ensure that any two packets traveling along the same path to the same destination always

proceed in order.

Of course, there is a strong correlation between the time required to route the packets and the selection

of the paths. In particular, the maximum distance, d, traveled by any packet is always a lower bound on

the time. We call this distance the dilation of the paths. Similarly, the largest number of packets that must

traverse a single edge during the entire course of the routing is a lower bound. We call this number the

congestion, c, of the paths. Figure 2 shows a set of paths for the packets of Figure 1 with dilation 3 and

congestion 3.

1.1 Previous and related work

Given any set of paths with congestion c and dilation d, in any network, it is straightforward to route all

of the packets to their destinations in cd steps using queues of size c at each edge. In this case the queues

are big enough that a packet can never be delayed by a full queue in front, so each packet can be delayed at

most c� 1 steps at each of at most d edges on the way to its destination.

In [9], Leighton, Maggs, and Rao showed that there are much better schedules. In particular, they

established the existence of a schedule using O(c+ d) steps and constant-size queues at every edge, thereby

achieving the naive lower bounds for any routing problem. The result is highly robust in the sense that it

works for any set of edge-simple paths and any underlying network. (�A priori, it would be easy to imagine

that there might be some set of paths on some network that required more than 
(c + d) steps or larger

than constant-size queues to route all the packets.) The method that they used to show the existence of

optimal schedules, however, is not constructive. In other words, the fastest known algorithms for producing

schedules of length O(c + d) with constant-size edge queues require time that is exponential in the number

of packets.

For the class of leveled networks, Leighton, Maggs, Ranade, and Rao [8] showed that there is a simple

on-line randomized algorithm for routing the packets to their destinations within O(c + L + logN ) steps,

1



1

2
1

3

45 2

3

5 4

Figure 1: A graph model for packet routing.

with high probability, where L is the number of levels in the network, and N is the total number of packets.

(In a leveled network with L levels, each node is labeled with a level number between 0 and L�1, and every

edge that has its tail on level i has its head on level i+ 1, for 0 � i < L � 1.)

Mansour and Patt-Shamir [10] then showed that if packets are routed greedily on shortest paths, then

all of the packets reach their destinations within d+N steps, where N is the total number of packets. These

schedules may be much longer than optimal, however, because N may be much larger than c.

Recently Meyer auf der Heide and V�ocking [11] devised a simple on-line randomized algorithm that routes

all packets to their destinations in O(c + d + logN ) steps, with high probability, provided that the paths

taken by the packets are short-cut free (e.g., shortest paths).

1.2 Our results

In this paper, we show how to produce schedules of length O(c + d) in O(P(log logP) logP) time, with

probability at least 1 � 1=P� , for any constant � > 0, where P is the sum of the lengths of the paths

taken by the packets. The schedules can also be found in polylogarithmic time on a parallel computer using

O(P(log logP) logP) work, with probability at least 1� 1=P�.

The algorithm for producing the schedules is based on an algorithmic form of the Lov�asz Local Lemma

(see [6] or [13, pp. 57{58]) discovered by Beck [3]. Showing how to modify Beck's arguments so that they can

be applied to scheduling problems is the main contribution of the paper. Once this is done, the construction

of optimal routing schedules is accomplished using the methods of [9].

The result has several applications. For example, if a particular routing problem is to be performed many

times over, then it may be feasible to compute the optimal schedule once using global control. This situation

arises in network emulation problems. Typically, a guest network G is emulated by a host network H by

embedding G intoH. (For a more complete discussion of emulations and embeddings, see [7].) An embedding

maps nodes of G to nodes of H, and edges of G to paths in H. There are three important measures of an

embedding: the load, congestion, and dilation. The load of an embedding is the maximumnumber of nodes

of G that are mapped to any one node of H. The congestion is the maximumnumber of paths corresponding

to edges of G that use any one edge of H. The dilation is the length of the longest path. Let l, c, and

d denote the load, congestion, and dilation of the embedding. Once G has been embedded in H, H can

emulate G in a step-by-step fashion. Each node of H �rst emulates the local computations performed by

the l (or fewer) nodes mapped to it. This takes O(l) time. Then for each packet sent along an edge of G, H

sends a packet along the corresponding path in the embedding. The algorithm described in this paper can

be used to produce a schedule in which the packets are routed to their destinations in O(c+ d) steps. Thus,

H can emulate each step of G in O(l + c+ d) steps.

The result also has applications to job-shop scheduling. In particular, consider a scheduling problem with

2



1

2
1

3

45 2

3

5 4

Figure 2: A set of paths for the packets with dilation d = 3 and congestion c = 3.

jobs j1; : : : ; jr, and machines m1; : : : ;ms, for which each job must be performed on a speci�ed sequence of

machines. In this application, we assume that each job occupies each machine that works on it for a unit

of time, and that no machine has to work on any job more than once. Of course, the jobs correspond to

packets, and the machines correspond to edges in the packet routing problem. Hence, we can de�ne the

dilation of the scheduling problem to be the maximum number of machines that must work on any job, and

the congestion to be the maximumnumber of jobs that have to be run on any machine. As a consequence of

the packet routing result, we know that any scheduling problem can be solved in O(c+d) steps. In addition,

we know that there is a schedule for which each job waits at most O(c + d) steps before it starts running,

and that each job waits at most a constant number of steps in between consecutive machines. The queue of

jobs waiting for any machine will also always be at most a constant.

1.3 Outline

The remainder of the paper is divided into sections as follows. In Section 2, we give a very brief overview of the

non-constructive proof in [9]. Also we introduce some de�nitions, and present two important lemmas which

will be of later use. In Section 3, we describe how to make the non-constructive method in [9] constructive,

and analyze its running time. In Section 4, we show how to parallelize the scheduling algorithm. We conclude

with some remarks in Section 5.

2 Preliminaries

In [9], Leighton, Maggs, and Rao proved that for any set of packets whose paths are edge-simple1 and have

congestion c and dilation d, there is a schedule of length O(c + d) in which at most one packet traverses

each edge of the network at each step, and at most a constant number of packets wait in each queue at each

step. Note that there are no restrictions on the size, topology, or degree of the network or on the number of

packets.

The strategy for constructing an e�cient schedule is to make a succession of re�nements to the \greedy"

schedule, S0, in which each packet moves at every step until it reaches its �nal destination. This initial

schedule is as short as possible; its length is only d. Unfortunately, as many as c packets may use an edge at

a single time step in S0, whereas in the �nal schedule at most one packet is allowed to use an edge at each

step. Each re�nement will bring us closer to meeting this requirement.

1
An edge-simple path uses no edge more than once.

3



The proof uses the Lov�asz Local Lemma ([6] or [13, pp. 57{58]) at each re�nement step. Given a set of

\bad" events in a probability space, the lemma provides a simple inequality which, when satis�ed, guarantees

that with probability greater than zero, no bad event occurs. The inequality relates the probability that

each bad event occurs with the dependence among them. A set of events A1; A2; : : : ; Am in a probability

space has dependence at most b if every event is mutually independent of some set of m � b� 1 other bad

events. The lemma is non-constructive; for a discrete probability space, it shows only that there exists some

elementary outcome that is not in any bad event.

Lemma [Lov�asz] Let A1; A2; : : : ; Am be a set of \bad" events, each occurring with probability p with depen-

dence at most b. If 4pb < 1, then with probability greater than zero, no bad event occurs.

Before proceeding, we need to introduce some notation. A T -frame is a sequence of T consecutive time

steps. The frame congestion, Cf , in a T -frame is the largest number of packets that traverse any edge in the

frame. The relative congestion, R, in a T -frame is the ratio Cf=T of the congestion in the frame to the size

of the frame.

2.1 A pair of tools for later use

In this section we re-state Lemma 3.5 of [9] and we prove Proposition 3.6, which replaces Lemma 3.6 of [9].

Both will be used in the proofs through Section 3.

Lemma 3.5 [9] In any schedule, if the number of packets that use a particular edge g in any y-frame is at

most Ry, for all y between T and 2T � 1, then the number of packets that use g in any y-frame is at most

Ry, for all y � T .

Proof: Consider a frame � of size T 0, where T 0 > 2T � 1. The �rst (bT 0=T c� 1)T steps of the frame can be

broken into T -frames. In each of these frames, at most RT packets use g. The remainder of the T 0-frame �

consists of a single y-frame, where T � y � 2T � 1, in which at most Ry packets use g.

The following proposition will be used in place of Lemma 3.6 of [9].

Proposition 3.6 Suppose that there are positive constants �1; �2, �1 � �2, and �, such that in a schedule

of size I�1 (or smaller) the relative congestion is at most � in frames of size I�2 or larger, and let q be the

number of edges traversed by the packets in this schedule. Furthermore, suppose that each packet is assigned a

delay chosen randomly, independently, and uniformly from the range [0; I�2] and that if a packet is assigned

a delay of x, then x delays are inserted in the �rst I�3 steps of the schedule and I�2 � x delays are inserted

in the last I�3 steps, where �3 is also a positive constant. Then for any constant � > 0, with probability at

least 1 � q=I� the relative congestion in any frame of size log2 I or larger in-between the �rst and last I�3

steps in the new schedule is at most �(1 + �), for some positive � = O(1)=
p
log I .

Proof: To bound the relative congestion in frames of size log2 I or larger, we need to consider all q edges

and, by Lemma 3.5, all frames of size between log2 I and (2 log2 I) � 1.

As we shall see, the number of packets that use an edge g during a particular T -frame � has a binomial

distribution. In the new schedule, a packet can use g during � only if in the original schedule it used g during

� or during one of the I�2 steps before the start of � . Since the relative congestion in any frame of size I�2

or greater in the original schedule is at most �, there are at most �(I�2 + T ) such packets. The probability

that an individual packet that could use g during � actually does so is at most T=I�2 . Thus, the probability

p that �0 or more packets use an edge g during a particular T frame � is at most

p �
�(I�2+T )X
k=�0

�
�(I�2 + T )

k

��
T

I�2

�k�
1� T

I�2

��(I�2+T )�k
:

To estimate the area under the tails of this binomial distribution, we use the following Cherno�-type

bound [5]. Suppose that there are x independent Bernoulli trials, each of which is successful with probability

4



p0. Let S denote the number of successes in the x trials, and let � = E[S] = xp0. Following Angluin and

Valiant [2], we have

Pr[S � (1 + 
)�] � e�

2�=3

for 0 � 
 � 1.

In our application, x = �(I�2 + T ), p0 = T=I�2 , and � = �(I�2 + T )T=I�2 . For 
 =
p
3k0= log I (where

k0 is any positive constant), � � 1, and T � log2 I, we have Pr[S � (1 + 
)�] � e�k0�(I
�2+T )T=(I�2 log I) �

e�k0 log I � e�k0 ln I = 1=Ik0 . Setting �0T = (1 + 
)� = (1 +
p
3k0= log I)�(I

�2 + T )T=I�2 , we have

�0 � �(1 + k1=
p
log I), since log2 I=I�2 � 1=

p
log I , for I large enough, for some constant k1 > 0 (that

depends on k0). Let � = k1=
p
log I . Then �0 � �(1 +�). Thus p = Pr[S � �0T ] � Pr[S � (1+ 
)�] � 1=Ik0.

Since there are at most (I�1 + I�2) � 2I�1 starting points for a frame, and log2 I di�erent size frames

starting at each point, and there are at most q distinct edges per frame, the probability that the relative

congestion is more than �0 in any frame is at most q2I�1 log2 I=Ik0 � q=Ik0��1�2 (for I � 1, 2 log2 I � I2).

Setting k0 = � + �1 + 2 completes the proof.

3 An algorithm for constructing optimal schedules

In this section, we describe the key ideas required to make the non-constructive proof of [9] constructive.

There are many details in that proof, but changes are required only where the Lov�asz Local Lemma is used,

in Lemmas 3.2, 3.7 and 3.9 of [9]. The non-constructive proof showed that a schedule can be modi�ed by

assigning delays to the packets in such a way that in the new schedule the relative congestion can be bounded

in much smaller frames than in the old schedule. In this paper, we show how to �nd the assignment of delays

quickly. We will not regurgitate the entire proof in [9], but only reprove those lemmas, trying to state the

replacement propositions in a way as close as possible to the original lemmas.

In Section 3.1, we provide a proposition, Proposition 3.2, that is a constructive version of Lemma3.2 of [9].

In Sections 3.2 and 3.3, we provide three propositions that are meant to replace Lemma 3.7 of [9]. Lemma 3.7

is applied O(log�(c + d)) times in [9]. In this paper we will use Propositions 3.7.1 and 3.7.2 to replace the

�rst two applications of Lemma 3.7. The remaining applications will be replaced by Proposition 3.7.3. In

Section 3.4, we present the three replacement propositions for Lemma 3.9 of [9]. Our belief is that a reader

who understands the structure of the proof in [9] and the propositions in this paper can easily see how to

make the original proof constructive. Finally, we analyze the running time of our algorithm in Section 3.5.

3.1 The �rst reduction in frame size

For a given set of N packets, let c and d denote the congestion and the dilation of the paths taken by these

packets, and let P denote the sum of the length of these paths. Let m be the number of edges traversed by

the packets (we can ignore the edges not traversed by any packet in the network). Note that m � P � mc.

The following proposition is meant to replace Lemma 3.2 of [9]. It is used just once in the proof, to reduce

the frame size from d to logP.

Proposition 3.2 For any constant � > 0, there is a constant � > 0, such that there exists an algorithm that

constructs a schedule of length d+ �c in which packets never wait in edge queues and in which the relative

congestion in any frame of size logP or larger is at most 1. The algorithm runs in time at most O(P), and
succeeds with probability at least 1� 1=P�.

Proof: The algorithm is simple: assign each packet an initial delay that is chosen randomly, independently,

and uniformly from the range [0; �c], where � is a constant that will be speci�ed later. The packet will wait

out its initial delay and then travel to its destination without stopping. The length of the new schedule is

at most �c+ d. Constructing the new schedule takes time at most O(P).
To bound the relative congestion in frames of size logP or larger, we need to consider all m edges and,

by Lemma 3.5, all frames of size between logP and 2 logP � 1. For any particular edge g, and T -frame � ,

5



where logP � T � 2 logP � 1, the probability, p, that more than T packets use g in � is at most

p �
cX

k=T

�
c

k

��
T

�c

�k�
1� T

�c

�c�k

�
�
c

T

��
T

�c

�T

�
� e
�

�T

since each of the at most c packets that pass through g has probability at most T=�c of using g in � .

(Note that e denotes the base of the natural logarithm.) The total number of frames to consider is at most

(�c + d) logP, since there are at most �c + d places for a frame to start, and logP frame sizes. Thus the

probability that the relative congestion is too large for any frame of size logP or larger is at most

m logP(�c+ d)
� e
�

�logP
:

Using the inequalities P � c, P � m; and P � d, we have that for any constant � > 0, there exists a constant

� > 0, such that this probability is at most 1=P�.

Before applying Proposition 3.7.1, we �rst apply Proposition 3.2 to produce a schedule S1 of length

O(c+ d) in which the relative congestion in any frame of size logP or larger is at most 1. For any positive

constant �, this step succeeds with probability at least 1� 1=P�. If it fails, we simply try again.

3.2 A randomized algorithm to reduce the frame size

In this section, we prove two very similar propositions, Propositions 3.7.1 and 3.7.2, that are meant to replace

the �rst two applications of Lemma 3.7 of [9], which we state below. Let I � 0. We break a schedule S into

blocks of 2I3 + 2I2 � I consecutive time steps.

Lemma 3.7 [9] In a block of size 2I3 + 2I2 � I, let the relative congestion in any frame of size I or greater

be at most r, where 1 � r � I. Then there is a way of assigning delays to the packets so that in-between the

�rst and the last I2 steps of this block, the relative congestion in any frame of size I1 = log2 I or greater is

at most r1 = r(1 + �1), where �1 = O(1)=
p
log I.

After applying Proposition 3.2 to reduce the frame size from d to logP , Proposition 3.7.1 is used to

reduce the frame size from logP to (log logP)2, and then Proposition 3.7.2 is used to reduce the frame

size from (log logP)2 to log2((log logP)2) = (log log logP)O(1). Unlike Lemma 3.7 of [9], Propositions 3.7.1

and 3.7.2 may increase the relative congestion by a constant factor. In general, we cannot a�ord to pay a

constant factor at each of the O(log�(c + d)) applications of Lemma 3.7 of [9], but we can a�ord to pay it

twice. For the application of Proposition 3.7.1, I = logP and r = 1. With probability at least 1 � 1=P�,

for any constant � > 0, we succeed in producing a schedule, S2, in which the relative congestion is at most

O(1) in frames of size log2 I = (log logP)2 (if we should fail, we simply try again). In the application of

Proposition 3.7.2, I = (log logP)2, and r = O(1). In the resulting schedule, S3, the relative congestion is at

most O(1) in frames of size log2((log logP)2) = (log log logP)O(1), with probability at least 1 � 1=P�, for

any constant � > 0. At this point, we start using Proposition 3.7.3.

Proposition 3.7.1 Let the relative congestion in any frame of size I or greater be at most r in a block of

size 2I3 + 2I2 � I, where 1 � r � I and I = logP. Let Q be the sum of the lengths of the paths taken by

the packets within this block. Then there is an algorithm for assigning initial delays in the range [0; I] to

the packets so that in-between the �rst and last I2 steps of the block, the relative congestion in any frame of

size log2 I or greater is at most 2r0, where r0 = r(1 + �) and � = O(1)=
p
log I . For any constant � > 0, the

algorithm runs in time at most O(Q(log logP) logP), with probability at least 1� 1=P�.

Proof: We de�ne the bad event for each edge g in the network and each T -frame � , where log2 I � T �
2 log2 I � 1, as the event that more than r0T packets use g in � . A particular bad event may or may not

6



occur, i.e. may or may not be true, in a given schedule. If no bad event occurs, then by Lemma 3.5, the

relative congestion in all frames of size log2 I or greater will be at most r0. Since there are log2 I di�erent

frame sizes and there are at most (2I3 + 2I2 � I) + I = 2I3 + 2I2 di�erent frames of any particular size,

the total number of bad events involving any one edge is at most (2I3 + 2I2) log2 I < I4, for I greater than

some large enough constant.

We now describe the algorithm for �nding the assignment. We process the packets one at a time. To

each packet, we assign a delay chosen randomly, independently, and uniformly from 0 to I. We then examine

every event in which the packet participates. We say that the event for an edge g and a T -frame � is

critical if delays have been assigned to C packets that could possibly use g in � , and, of these, more than

CT=I+kr(I+T )T=(I
p
log I) packets actually use g during � , where k is a positive constant (to be speci�ed

later). Intuitively, the event becomes critical if the number of packets assigned delays so far that traverse edge

g in � exceeds the expected number of such packets (CT=I) by an excess term kr(I +T )T=(I
p
log I), which

is the maximum �nal excess with respect to the �nal expected value that we allow. Note that C � r(T + I).

If a packet causes an event to become critical, then we set aside all of the other packets that could also use

g during � , but whose delays have not yet been assigned. Let P denote the set of packets that are assigned

delays. We will deal with the packets that have been set aside later. As we shall see, after one pass of

assigning random delays to the packets, the problem of scheduling the packets that have been set aside is

broken into a collection of much smaller subproblems, with probability at least 1 � 1=P�0

, for any constant

�0 > 0.

In a pass, we assign a random delay to each packet, and check whether the event for edge g and T -frame

� becomes critical. We can do this checking as we construct the schedule in a per time step fashion. When

considering time t, we compute the number of packets that traverse each edge g used during t and then we

compute the frame congestion of the T -frames ending at t, for T 2 [log2 I; 2 log2 I � 1]. Note that the frame

congestion of the T -frame ending at time t can be computed by taking the frame congestion of the T -frame

ending at t � 1, subtracting the occurrences of edges in time t � T and adding the occurrences of edges in

time t. This can be done in time O(Q log2 I) � O(Q(log logP)2), Q being the sum of the number of edges

in the paths taken by the packets within the block. In the remaining of this paper, we assume we check for

the congestions of all T -frames of a block, log2 I � T < 2 log2 I, as just described. If a pass fails to reduce

the component size, we try again.

Since a total of at most r(I + T ) packets that traverse edge g have been assigned delays, the relative

congestion for the packets in � due to the packets in P is at most [rT (I + T )(1 + k=
p
log I)=I]=T � r(1 +

1=
p
log I)(1 + k=

p
log I) � r[1 + (2k + 1)=

p
log I], since T < 2 log2 I and 2 log2 I=I � 1=

p
log I, for I large

enough. Choose k so that the relative congestion due to the packets in P in � is at most r0 = r(1 + �).

In order to proceed, we must introduce some notation. Let m0 be the number of edges traversed by

some packet within the block. The dependence graph, G, is the graph in which there is a node for each

bad event, and an edge between two nodes if the corresponding events share a packet. Let b denote the

degree of G. Whether or not a bad event for an edge g and a time frame � occurs depends solely on the

assignment of delays to the packets that pass through g. Thus, the bad event for an edge g and a time

frame � and the bad event for an edge g0 and a time frame � 0 are dependent only if g and g0 share a packet.

Since at most r(2I3 + 2I2 � I) � rI4 packets pass through g, and each of these packets passes through at

most 2I3 + 2I2 � I � I4 other edges g0, and there are at most I4 time frames � 0, for I large enough, the

dependence b is at most rI12. For r � I, we have b � I13. Since the packets use at most m0 di�erent edges

in the network, and for each edge there are at most I4 bad events, the total number of nodes in G is at

most m0I4. We say that a node in G is critical if the corresponding event is critical. We say that a node

is endangered if its event shares a packet with an event that is critical. Let G1 denote the subgraph of G

consisting of the critical and endangered nodes and the edges between them. If a node is not in G1, then

all of the packets that use the corresponding edge have already been assigned a delay (and since this event

is not critical, the relative congestion on this edge in the corresponding time frame is at most r0T ), and the

bad event represented by that node cannot occur, no matter how we assign delays to the packets not in P .

Hence, from here on we need only consider the nodes in G1.

We are going to show that, with high probability, the size of the largest connected component U of G1 is

at most I52 logP. Since di�erent components are not connected by edges in G1, no two components share

a packet. Also any two events that involve edges traversed by the same packet share an edge in G1, and so

7



are in the same connected component. Thus there exists a one-to-one correspondence between components

of G1 and disjoint sets in a partition of the packets not in P . Hence, we can assign the delays to the packets

in each component separately, and we have reduced the size of a largest component in G1 from m0I4 to

I52 logP.
The trick to bounding the size of the largest connected component U is to observe that the subgraph of

critical nodes in U is connected in the cube, G3
1, of the graph G1, i.e., the graph in which there is an edge

between two distinct nodes u and v if in G1 there is a path of length at most 3 between u and v. In G3
1, the

critical nodes of U form a connected subgraph because any path u; e1; e2; e3; v that connects two critical or

endangered nodes u and v by passing through three consecutive endangered nodes e1, e2, e3 can be replaced

by two paths u; e1; e2; w and w; e2; e3; v of length three that each pass through e2's critical neighbor w. Let

G2 denote the subgraph of G3
1 consisting only of the critical nodes and the edges between them. Note that

the degree of G2 is at most b3, and if two nodes lie in the same connected component in G2, then they must

also lie in the same connected component in G3
1, and hence in G1.

By a similar argument, any maximal independent set of nodes in a connected component of G2 is con-

nected in G3
2. Note that if a set of nodes is independent in G2, then it must also be independent in G3

1 and

in G1. Let G3 be the subgraph of G3
2 induced by the nodes in a maximal independent set in G2 (any such

maximal independent set in G2 will do). The nodes in G3 form an independent set of critical nodes in G1.

The degree of G3 is at most b9.

Our goal now is to show that the number of nodes in any connected componentW of G3 is at most logP,
with probability 1 � 1=P�0

, for any constant �0 > 0. To begin, with every connected component W of G3,

we associate a spanning tree of W , TW (any such tree will do). Note that, if W and W 0 are two distinct

connected components of G3, then TW and TW 0 are disjoint.

Now let us enumerate the di�erent trees of size t in G3. To begin, a node is chosen as the root. Since

there are at most m0I4 nodes in G3, there are at most m0I4 possible roots. Next, we construct the tree as

we perform a depth-�rst traversal of it. Nodes of the tree are visited one at a time. At each node u in the

tree, either a previously unvisited neighbor of u is chosen as the next node to be visited (and added to the

tree), or the parent of u is chosen to be visited (at the root, the only option is to visit a previously unvisited

neighbor). Thus, at each node there are at most b9 ways to choose the next node. Since each edge in the

tree is traversed once in each direction, and there are t � 1 edges, the total number of di�erent trees with

any one root is at most (b9)2(t�1) < b18t.

Any tree of size t in G3 corresponds to an independent set of size t in G1, moreover, to an independent set

of t critical nodes in G1. We can bound the probability that all of the nodes in any particular independent

subset U of size t in G1 are critical as follows. Let pC be the probability that more than M = CT=I+kr(I +

T )T=I
p
log I packets use edge g in � . Then

pC �
r(I+T )X
j=M

�
r(I + T )

j

��
T

I

�j �
1� T

I

�r(I+T )�j
:

Since M = CT=I + kr(I + T )T=I
p
log I and C � r(I + T ), using the Cherno�-type bound as in the proof

of Proposition 3.6, with � = r(I + T )T=I, 
 =
p
3k0= log I , log

2 I � T � 2 log2 I � 1, for any large enough

constants k and k0, we have pC = Pr[S � M ] � Pr[S � (1 + 
)�] � e�

2�=3 = e�k0r(I+T )T=I log I �

e�k0 log I � e�k0 ln I = 1=Ik0 . This holds for any C � r(I + T ) and thus the probability that the event for

g and � becomes critical after C packets have been assigned delays is at most 1=Ik0 . Since the nodes in U

are independent in G1, the corresponding events are also independent. Hence the probability that all of the

nodes in the independent set are critical is at most 1=Ik0t. Thus the probability that there exists a tree of

size t in G3 is at most m0I4b18t=Ik0t � m0I4�(k0�234)t (since there exists at most m0I4b18t di�erent trees of

size t in G3 and b � I13). Since m0 � Q � P , we can make this probability less than 1=P�0

, for t = logP,
and any constant �0 > 0, by choosing k0 to be a su�ciently large constant. Hence, with probability at least

1� 1=P�0

, the size of the largest spanning tree in G3 will be logP.
We can now bound the size of the largest connected component in G1. Since the largest connected

component in G3 has at most t nodes, with probability at least 1 � 1=P�0

, and each of these nodes may

have b3 neighbors in G2, the largest connected component in G2 contains at most b3t nodes, with the same

probability. As we argued before, the critical nodes in any connected component of G1 are connected in G2.

8



Thus, the maximum number of critical nodes in any connected component of G1 is at most b3t. Since each

of these nodes may have as many as b endangered neighbors, the size of the largest connected component in

G1 is at most b4t � I52t, with high probability.

We still have to �nd a schedule for the packets not in P . We now have a collection of independent

subproblems to solve, one for each component in the dependence graph. We can use Proposition 3.6 to �nd

the initial delays for these packets. Since each node in the dependence graph corresponds to an edge in

the routing network, a component with x nodes in the dependence graph corresponds to at most x, and

possibly fewer, edges in the routing network. After applying Proposition 3.6 once for some subproblem

with q � I52t = I52 logP = I53, since I = logP, the relative congestion in frames of size log2 I or larger

in-between the �rst and last I2 steps in the new schedule for this subproblem is at most r0, with probability

at least 1 � q=I�, for any constant � > 0. Hence, if we apply Proposition 3.6 to each subproblem, then the

relative congestion of the packets not in P , in frames of size log2 I or larger in-between the �rst and last I2

steps in the new schedule, is at most r0, with probability at least 1� q=I� � 1�1=I��53 = 1�1=(logP)��53,

since the subproblems are mutually independent and disjoint.

If we apply Proposition 3.6 logP=(log logP) times to each (mutually disjoint and independent) routing

subproblem, then for any constant � > 53 and P large enough, with probability at least 1�1=(logP)(��53) logP=(log logP) �
1�1=P��53, the relative congestion in any frame of size log2 I or greater is at most r0 = r(1+O(1)=

p
log I).

Applying Proposition 3.6 logP=(log logP) times and checking whether the resulting schedule is feasible

takes time at most O(Q(log logP)2 logP=(log logP)) = O(Q(log logP) logP).
We now have schedules for the packets in P and for the packets not in P . Both have relative congestion

r(1 + O(1)=
p
log I), with probability at least 1 � 1=P�0

, for any constant �0 > 0. When we merge the

two schedules, the relative congestion may be as large as the sum of the two relative congestions, that is,

2r(1 + O(1)=
p
log I), with probability at least 1 � 1=P�, for any �xed � > 0. The running time of the

algorithm is at most O((log logP + logP)Q(log logP)) = O(Q(log logP) logP).

Proposition 3.7.2 Let the relative congestion in any frame of size I or greater be at most r in a block of

size 2I3 + 2I2 � I, where 1 � r � I and I = (log logP)2. Let Q be the sum of the lengths of the paths taken

by the packets within the block. Then there is an algorithm for assigning initial delays in the range [0; I] to

the packets so that in-between the �rst and last I2 steps of the block, the relative congestion in any frame of

size log2 I or greater is at most 2r0, where r0 = r(1 + �) and � = O(1)=
p
log I . For any constant � > 0, the

algorithm runs in time at most Q(log log logP)O(1) logP , with probability at least 1� 1=P�.

Proof: The proof of this proposition is identical to the one presented for the previous proposition (we let

I = (log logP)2 in that proof), except for the last part, when we assign delays to the packets that are not

in P .

In this case, we need to make another pass through the packets before applying Proposition 3.6 logP=(log log logP)O(1)

times to each component. In the �rst pass, we reduce the maximum component size in G1 from m0I4 to

I52 logP, with probability at least 1 � 1=P�0

, for any constant �0 > 0. In the second pass, we reduce

the component size from I52 logP down to I52 log(I52 logP) � I53, for large enough I = (log logP)2, by
taking t = log(I52 logP), and noting that we now have m0 � I52 logP. For any component, this step

will succeed with probability at least 1 � 1=(I52 logP)�0

, for any constant �0 > 0. To make this proba-

bility as high as it was in the case I = logP , if a pass fails for any component, we simply try to reduce

the component size again, up to O(logP=(log logP)) times. Then with probability at least 1 � 1=P�0

, for

any constant �0 > 0, we have reduced the component size to at most I53, and the overall time taken by

the two passes was at most O(Q log2((log logP)2) logP=(log logP)) � Q(log log logP)O(1) logP=(log logP),
with probability at least 1 � 2=P�0

. The second pass adds some packets to the set P . Let Pi denote

the number of packets assigned delays in the i-th pass. Then the relative congestion due to these pack-

ets will be at most [(P1 + P2)T=I + 2kr(I + T )T=(I
p
log I)]=T � r(I + T )=I + 2kr(I + T )=(I

p
log I) �

r[1 + T=I + 2k(I + T )=(I
p
log I)] � r(1 + (4k + 1)=

p
log I), since T < 2 log2 I and 2 log2 I=I � 1=

p
log I.

Now we apply Proposition 3.6 logP=(log log logP)O(1) times, assigning delays to the packets not in P
in time Q(log log logP)O(1) logP, obtaining a feasible schedule for these packets with relative congestion

r(1 + O(1)=
p
log I), with probability at least 1� 1=P�0

, for any �xed �0 > 0.

9



We have schedules for the packets in P and for the packets not in P . Both have relative congestion

r(1 +O(1)=
p
log I), with probability at least 1� 2=P�0

, for any constant �0 > 0. The total work performed

was at most Q(log log logP)O(1) logP . When we merge the two schedules, the resulting relative congestion

may be as large as the sum of the two relative congestions, that is 2r(1 +O(1)=
p
log I), with probability at

least 1� 1=P� , for any �xed � > 0.

3.3 Applying exhaustive search

The remaining O(log�(c+ d)) applications of Lemma 3.7 in [9] are replaced by applications of the following

proposition, which uses the same technique as Propositions 3.7.1 and 3.7.2 except that instead of using

Proposition 3.6 for each component of the subgraph induced by critical and endangered nodes in the depen-

dence graph, it uses the Lov�asz Local Lemma and exhaustive search to �nd the settings of the delays for the

packets.

Proposition 3.7.3 Suppose we have a block of size 2I3 + 2I2 � I. Let Q be the sum of the lengths of

the paths taken by the packets within this block, and let the relative congestion in any frame of size I or

greater in this block be at most r, where 1 � r � I and I � (log log logP)O(1). Then there is some way

of assigning initial delays in the range [0; I] to the packets so that the relative congestion in any frame of

size log2 I or greater in-between the �rst and last I2 steps in the resulting schedule is at most r0, where

r0 = r(1 + �) and � = O(1)=
p
log I. Furthermore, for any constant � > 0, this assignment can be found in

Q(log log log logP)O(1) logP time, with probability at least 1� 1=P�.

Proof: The proof uses the Lov�asz Local Lemma to show that an assignment of initial delays satisfying the

conditions of the proposition exists.

We �rst assign delays to some packets by making three passes through the packets using the algorithm of

Proposition 3.7.1. After the �rst pass, with probability at least 1� 1=P�0

, for any constant �0 > 0, the size

of the largest remaining subproblem will be I52 logP. We need to make two more passes, reducing the size of

the largest subproblem �rst to I52 log(I52 logP), and then to I52 log(I52 log(I52 logP)) = (log log logP)O(1)

(for I � (log log logP)O(1)). As in the second pass in the proof of Proposition 3.7.2, the two additional

passes are repeated O(logP=(log logP)) and logP=(log log logP)O(1) times resp., for each component, if we

fail to reduce the component size as desired. For any constant � > 0, we succeed in reducing the component

size to (log log logP)O(1) in time at most Q(log log log logP)O(1) logP , with probability at least 1� 1=P�.

We now use the Lov�asz Local Lemma to show that there exists a way of completing the assignment of

delays (i.e., to assign delays to the packets not in P ) so that the relative congestion in frames of size log2 I

or greater in this block is at most r(1 + O(1)=
p
log I). We associate a bad event with each edge and each

time frame of size log2 I through (2 log2 I) � 1. The bad event for an edge g and a particular T -frame �

occurs when more than Mg = (r(I + T )�Cg)T=I + �0r(I + T )T=I packets not in P use edge g in � , where

�0 = O(1)=
p
log I and Cg is the number of packets in P that traverse edge g during � . As we argued before,

the total number of bad events involving any one edge is at most I4. We show that if each packet not in P

is assigned a delay chosen randomly, independently, and uniformly from the range [0; I], then with non-zero

probability no bad event occurs. In order to apply the lemma, we must bound both the dependence of the

bad events, and the probability that any bad event occurs. The dependence b is at most I13, as argued before.

For any edge g and T -frame � that contains g, where log2 I � T � (2 log2 I)�1, the probability pg that more

thanMg packets not in P use g in � , can be shown to be at most 1=I14, for su�ciently large �0, using exactly

the same Cherno�-bound argument that was used in Proposition 3.7.1. Hence, 4maxfpggb � 4=I < 1 (for

I > 4), and by the Lov�asz Local Lemma, there is some way of assigning delays to the packets not in P so

that no bad event occurs.

Since at most r(T + I) packets pass through the edge associated with any critical node, and there are

at most I + 1 choices for the delay assigned to each packet, the number of di�erent possible assignments

for any subproblem containing (log log logP)O(1) critical nodes is at most (I + 1)r(I+T )(log log logP)O(1) �
I2I

2(log log logP)O(1)

(since r < I and T < 2 log2 I). For I < (log log logP)O(1) and P larger that some

constant, this quantity is smaller than (logP)
 , for any �xed constant 
 > 0. Hence, we need to try out at

most log
 P possible delay assignments.

10



After the four passes (consider the exhaustive search we perform to assign delays to the packets not in

P as the fourth pass) the number of packets that use an edge g in any T -frame is at most

4X
i=1

�
CiT

I
+ �0

r(I + T )T

I

�
;

with probability at least 1�1=P�, where Ci is the number of packets that could have possibly traversed edge g,

and that were assigned delays in the i-th pass. Note that Cg = C1+C2+C3. Since C1+C2+C3+C4 � r(I+T ),

the number of packets that traverse any edge in any T -frame is at most

r(I + T )T

I
+ 4�0

r(I + T )T

I
;

which means that the relative congestion in any T -frame, where log2 I � T < 2 log2 I, is at most

�
r(I + T )

I

�
(1 + 4�0) = r

�
1 +

T

I

�
(1 + 4�0)

= r

�
1 +

O(1)p
log I

�
= r(1 + �);

as claimed, since 2 log2 I=I � 1=
p
log I, for I large enough.

We can bound the total time taken by the algorithm as follows. The �rst three passes take time at most

Q(log log log log)O(1) logP, with probability at least 1 � 1=P�. After the third pass, we solve subproblems

containing (log log logP)O(1) critical nodes exhaustively. For each subproblem, for each of the at most log
 P
possible assignment of delays to the packets in the subproblem, for each T -frame � in the subproblem, for

every edge g in � , for log2 I � T < 2 log2 I, we must check whether more thanMg packets traverse g during � .

This takes time at most O(Q log2 I log
 P) � Q(log log log logP)O(1) log
 P, for P large enough, for any �xed


 > 0. In particular, for 
 = 1 and P large enough, this quantity is bounded by Q(log log log logP)O(1) logP.
Hence the overall time taken is bounded by Q(log log log logP)O(1) logP.

3.4 Moving the block boundaries

Now we present the three replacement propositions for Lemma3.9 of [9], which bounds the relative congestion

after we move the block boundaries (see [9]). The three propositions that follow are analogous to the three

replacement propositions, Propositions 3.7.1-3, for Lemma 3.7 of [9]. Suppose we have a block of size

2I3 + 3I2, obtained after we inserted delays into the schedule as described in Propositions 3.6 and 3.7.1-3,

and moved the block boundaries as described in [9]. Each proposition refers to a speci�c size of I. Note

that in [9], the steps between steps I3 and I3 + 3I2 in the block are called the \fuzzy region" of the block.

We assume that the relative congestion in any frame of size I or greater in the block is at most r, where

1 � r � I.

Proposition 3.9.1 Let I = logP. Let Q be the sum of the lengths of the paths taken by the packets within the

block. Then there is an algorithm for assigning delays in the range [0; I2] to the packets such that in-between

steps I log3 I and I3 and in-between steps I3 + 3I2 and 2I3 + 3I2 � I log3 I, the relative congestion in any

frame of size log2 I or greater is at most 2r1, where r1 = r(1 + �1) and �1 = O(1)=
p
log I , and such that

in-between steps I3 and I3 + 3I2, the relative congestion in any frame of size log2 I or greater is at most

2r2, where r2 = r(1 + �2) and �2 = O(1)=
p
log I. For any constant � > 0, this algorithm runs in time at

most O(Q(log logP) logP), with probability at least 1� 1=P� .

Proposition 3.9.2 Let I = (log logP)2. Let Q be the sum of the lengths of the paths taken by the packets

within the block. Then there is an algorithm for assigning delays in the range [0; I2] to the packets such that

11



in-between steps I log3 I and I3 and in-between steps I3+3I2 and 2I3+3I2�I log3 I, the relative congestion

in any frame of size log2 I or greater is at most 2r1, where r1 = r(1 + �1) and �1 = O(1)=
p
log I , and such

that in-between steps I3 and I3+3I2, the relative congestion in any frame of size log2 I or greater is at most

2r2, where r2 = r(1 + �2) and �2 = O(1)=
p
log I. For any constant � > 0, this algorithm runs in time at

most Q(log log logP)O(1) logP, with probability at least 1� 1=P�.

Proposition 3.9.3 Let I � (log log logP)O(1). Let Q be the sum of the lengths of the paths taken by the

packets within the block. Then there is an algorithm for assigning delays in the range [0; I2] to the packets

such that in-between steps I log3 I and I3 and in-between steps I3+ 3I2 and 2I3+3I2� I log3 I, the relative

congestion in any frame of size log2 I or greater is at most r1 = r(1 + �1), where �1 = O(1)=
p
log I, and

such that in-between steps I3 and I3 + 3I2, the relative congestion in any frame of size log2 I or greater is

at most r2 = r(1 + �2), where �2 = O(1)=
p
log I . For any constant � > 0, this algorithm runs in time at

most Q(log log log logP)O(1) logP, with probability at least 1� 1=P� .

3.5 Running time

Theorem 3.1 For any constant � > 0, the overall running time of the algorithm is at most O(P(log logP) logP),
with probability at least 1� 1=P�.

Proof: Note that each of the propositions in the previous sections dealt only with a single block. For

any I, partitioning the schedule into disjoint blocks and moving the block boundaries as described in [9]

take O(P) time. Let nI be the number of blocks in the schedule for the given I. Assume the blocks

are numbered from 1 to nI . Note that
PnI

i=1mi may be as large as P and
PnI

i=1Qi = P, where Qi

and mi are the sum of the path lengths and the number of edges used within block i, resp.. Let � be

any positive constant. For each partition of the schedule for a given I � (log log logP)O(1), we apply

Propositions 3.7.3 and 3.9.3 for each block i in this partition, 1 � i � nI , taking overall time at most

P(log log log logP)O(1) logP. Since we will repartition the schedule O(log�(c + d)) times after we bring I

down to (log log logP)O(1), the overall running time due to applications of Propositions 3.7.3 and 3.9.3 is

at most P(log log log logP)O(1)(logP) log�(c + d). Thus the total running time of the algorithm is at most

O(P)+ [O(log logP)+ (log log logP)O(1)+(log log log logP)O(1) log�(c+ d)]P logP � O(P(log logP) logP),
for P large enough, with probability at least 1 � 1=P� (since each of the propositions is successful with

probability at least 1 � 1=P�0

, for any positive constant �0). Note that we used the inequalities P � c and

P � d.

4 A parallel scheduling algorithm

At �rst glance, it seems as though the algorithm that was described in Section 3 is inherently sequential.

This is because the decision concerning whether or not to assign a delay to a packet is made sequentially.

In particular, a packet is deferred (i.e., not assigned a delay) if and only if it might be involved in an event

that became critical because of the delays assigned to prior packets.

In [1], Alon describes a parallel version of Beck's algorithm which proceeds by assigning values to all

random variables (in this case delays to all packets) in parallel, and then unassigning values to those variables

that are involved in bad events. The Alon approach does not work in this application because we cannot

a�ord the constant factor blow-up in relative congestion that would result from this process.

Rather, we develop an alternative method for parallelizing the algorithm. The key idea is to process the

packets in a random order. At each step, all packets that do not share an edge with an as-yet-unprocessed

packet of higher priority are processed in parallel.

To analyze the parallel running time of this algorithm, we �rst make a dependency graph G0 with a node

for every packet and an edge between two nodes if the corresponding packets can be involved in the same

event. Each edge is directed towards the node corresponding to the packet of lesser priority. By Brent's

12



Theorem [4], the parallel running time of the algorithm is then at most twice the length of the longest

directed path in G0.

Let D denote the maximum degree of G0. There are at most NDL paths of length L in G0. The

probability that any particular path of length L has all of its edges directed in the same way is at most 2=L!

(the factor of 2 appears because there are two possible orientations for the edges). Hence, with probability

near 1, the longest directed path length in G0 is O(D + logN ). This is because if L � k(D + logN ), for

some large constant k, then NDL � 2
L!

<< 1.

Each packet can be involved in at most r(2I3 + I2) log2 I events, and at most r(I + T ) � O(I) packets

can be involved in the same event. Hence, the degree D of G0 is at most O(I4 log2 I). By using the method

of Proposition 3.2 as a preprocessing phase, we can assume that c, d, and thus I, are all polylogarithmic in

logN . Hence, the parallel algorithm runs in NC, as claimed.

5 Remarks

The algorithms described in this paper are randomized, but they can be derandomized using the method of

conditional probabilities [12, 13].

References

[1] N. Alon. A parallel algorithmic version of the Local Lemma. Random Structures and Algorithms,

2(4):367{378, 1991.

[2] D. Angluin and L. G. Valiant. Fast probabilistic algorithms for hamiltonian circuits and matchings.

Journal of Computer and System Sciences, 18(2):155{193, April 1979.

[3] J. Beck. An algorithmic approach to the Lov�asz Local Lemma I. Random Structures and Algorithms,

2(4):343{365, 1991.

[4] R. P. Brent. The parallel evaluation of general arithmetic expressions. Journal of the ACM, 21(2):201{

208, April 1974.

[5] H. Cherno�. A measure of asymptotic e�ciency for tests of a hypothesis based on the sum of observa-

tions. American Mathematical Society, 23:493{507, 1952.

[6] P. Erd�os and L. Lov�as. Problems and results on 3-chromatic hypergraphs and some related questions.

In A. Hajnal et al., editor, In�nite and Finite Sets.Volume 11 of Colloq. Math. Soc. J. Bolyai, pages

609{627. North Holland, Amsterdam, The Netherlands, 1975.

[7] R. Koch, T. Leighton, B. Maggs, S. Rao, and A. Rosenberg. Work-preserving emulations of �xed-

connection networks. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing,

pages 227{240, May 1989.

[8] F. T. Leighton, B. M. Maggs, A. G. Ranade, and S. B. Rao. Randomized routing and sorting on

�xed-connection networks. Journal of Algorithms, 17(1):157{205, July 1994.

[9] F. T. Leighton, B. M. Maggs, and S. B. Rao. Packet routing and job-shop scheduling in O(congestion

+ dilation) steps. Combinatorica, 14(2):167{180, 1994.

[10] Y. Mansour and B. Patt-Shamir. Greedy packet scheduling on shortest paths. Journal of Algorithms,

14:449{65, 1993.

[11] F. Meyer auf der Heide and B. V�ocking. A packet routing protocol for arbitrary networks. In Proceedings

of the 12th Symposium on Theoretical Aspects of Computer Science, pages 291{302, March 1995.

[12] P. Raghavan. Probabilistic construction of deterministic algorithms: approximate packing integer pro-

grams. Journal of Computer and System Sciences, 37(4):130{143, October 1988.

[13] J. Spencer. Ten Lectures on the Probabilistic Method. SIAM, Philadelphia, PA, 1987.

13


